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Abstract

A consistent generalization to mixing rules depending on the composition proposed by Adachi and Sugie, Panagiotopoulos and Reid,
and Stryjek and Vera for the two-parameter mixing rule and by Schwartzentruber and Renon for the three-parameter mixing rule is pre-
sented. The invariance problem and dilution effect shortcomings pointed out by Michelsen and Kistenmacher when the original mixing
rules are applied to multicomponent mixtures, are avoided by the generalized mixing rules. The proposed mixing rules involving their
respective excess function models associated with a cubic equation of state (PRSV or PRCRP), were used on the representation of binary
vapor–liquid (hydrocarbon–hydrocarbon, acetone–alcohol, acetone–water, alcohol–water, and alcohol–hydrocarbon) and liquid–liquid
(hydrocarbon–water) equilibrium data. The binary interaction parameters of the model were used to test the performance of the gener-
alization on the prediction of ternary vapor–liquid (acetone–methanol–water, acetone–ethanol–water and hexane–ethanol–benzene) and
liquid–liquid (water–methanol–benzene, water–ethanol–hexane and water–1-propanol–benzene) equilibria. In addition, it is shown that a
more satisfactory prediction of the ternary vapor–liquid and liquid–liquid equilibria can be obtained by using a limit form of the generalized
three-parameter excess function model. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the representation of phase equilib-
ria of mixtures is carried out, usually, by using equations of
state with mixing rules. In general, satisfactory representa-
tions are obtained with classical one-parameter mixing rules
when these are applied to simple mixtures. On the contrary,
for complex mixtures it is necessary to consider mixing rules
depending on the composition with two or three binary inter-
action parameters like those suggested by Panagiotopoulos
and Reid [1], Adachi and Sugie [2], Stryjek and Vera [3],
and Schwartzentruber and Renon [4]. However, Michelsen
and Kistenmacher [5] have shown that these mixing rules
are limited to the representation of binary systems, i.e., the
extrapolation of these mixing rules to multicomponent mix-
tures is incoherent due to the invariance problem and the
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dilution effect. In order to overcome these shortcomings,
a generalization for the two-parameter mixing rules was
proposed by Mathias et al. [6] and by Schwartzentruber and
Renon [7] for, respectively, the Panagiotopoulos–Reid and
Adachi–Sugie mixing rules. After applying their mixing
rules on the prediction of ternary liquid–liquid equilibria,
Mathias et al. concluded that their formulation does not
provide a significantly improved correlative capability over
the original mixing rules. On the other hand, Schwartzen-
truber and Renon applied their generalized Adachi–Sugie
mixing rules only on binary and ternary vapor–liquid
equilibria but not in systems showing liquid–liquid
equilibria.

In this work, a simple generalization for both the two- and
three-parameter mixing rules are presented. The application
of this generalization was tested on the prediction of ternary
vapor–liquid and liquid–liquid equilibria using their corre-
sponding excess function models associated to two modified
versions of the Peng–Robinson equation of state [8].
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2. Problem statement

2.1. General formalism of the model equation
of state — excess function

In the formalism of equations of state associated with
excess functions using the reference at constant packing
fraction, η = b/v, the compressibility factor,z = Pv/RT,
of a mixture atp components can be written as [9],

z = 1

1 − η
− a

bRT
Q′(η) (1)

with

a

b
=

p∑
i=1

xi
ai

bi
− E(T , x) (2)

and

b =
p∑

i=1

xibi (3)

where Q′(η) is a packing fraction function depending on
the cubic equation of state considered andE(T,x) is the
excess free energy which can be expressed either from the
classical forms of excess functions (e.g., van Laar, NRTL,
UNIQUAC, UNIFAC) or derived from a given mixing
rule.

By introducing the following function into Eq. (1)

Q′(η) = η

(1 + c1η)(1 + c2η)
(4)

we obtain different equations of state depending on the val-
ues of constantsc1 andc2. Thus, for instance, withc1 = 0
and c2 = 1, the Redlich–Kwong [10] equation of state is
obtained.

In this work, the Peng–Robinson equation of state with
c1 = 1−√

2 andc2 = 1+√
2, and that withc1 = 0 andc2 =

2+ √
2, as suggested by Rauzy [11], were used in all phase

equilibrium calculations. However, it is well known that an
excellent correlation of the pure-component vapor pressures
is a requirement for accurate prediction of the vapor–liquid
equilibria of mixtures. Therefore, the temperature-dependent
function of equation of state energy parametera must
be carefully chosen to reproduce pure-component va-
por pressures. Toward this end, we have chosen both the
Stryjek–Vera [12] and Carrier–Rogalski–Péneloux [13] cor-
relations for functiona(T) in our calculations. We refer to
these as the PRSV and PRCRP equations of state, and they
are given in Appendices A and B, respectively.

In Eq. (2), the excess function isE(T,x) postulated to be

E(T , x) = 1

2

p∑
i=1

p∑
j=1

xixj
bibj

b
Eij, Eji = Eij, Eii = 0

(5)

when it is related to the classical van der Waals mixing rules
linear inb, Eq. (3), and quadratic ina

a =
p∑

i=1

p∑
j=1

xixj
√
aiaj (1 − kij), kji = kij, kii = 0 (6)

wherekij is the interaction parameter of binaryi and j. It
is shown that Eq. (5) is strictly equivalent to these mixing
rules if the binary energy parameterEij is defined as

Eij = (δi − δj )
2 + 2δiδj kij, δi =

√
ai

bi
(7)

Hence, we can use in Eq. (7) composition-dependent inter-
action parameterskij , like those proposed by Panagiotopou-
los and Reid [1], Adachi and Sugie [2], Stryjek and Vera
[3] for the two-parameter mixing rules (hereafter referred
as 2PCD mixing rule) or Schwartzentruber and Renon [4]
for the three-parameter mixing rule (hereafter referred as
3PCD mixing rule). Although the three 2PCD mixing rules
mentioned above are apparently different, Sandoval et al.
[14] have shown that them have the same functional form.

2.2. Composition-dependence mixing rules

As pointed above, the expressions of the binary interac-
tion parameterskij for the 2PCD and 3PCD mixing rules, are
equivalent to those energy interaction parametersEij based
on the excess function formalism. Thus, the interaction pa-
rameterkij for the 2PCD-mixing rule is given by

kij = k
(0)
ij + k

(1)
ij (xi − xj ) (8)

where

k
(0)
ji = k

(0)
ij , k

(1)
ji = −k

(1)
ij , k

(0)
ii = k

(1)
ii = 0 (9)

while for the 3PCD mixing rule, the interaction parameter
kij is expressed by

kij = k
(0)
ij + k

(1)
ij

k
(2)
ij xi − k

(2)
ji xj

k
(2)
ij xi + k

(2)
ji xj

(xi + xj ) (10)

where

k
(0)
ji = k

(0)
ij , k

(1)
ji = −k

(1)
ij , k

(2)
ji = 1 − k

(2)
ij ,

k
(0)
ii = k

(1)
ii = 0, 0 < k

(2)
ij < 1 (11)

Notice that for binary systems, ifk(2)ij = 0.5, Eq. (10) reduces
to Eq. (8).

2.3. The “Michelsen–Kistenmacher syndrome”
and the dilution effect

Michelsen and Kistenmacher [5] showed that mixing rule
such as given by Eq. (6) with interaction parameters ex-
pressed by Eqs. (8) and (10), are not conservative when two
components are made identical in a mixture. In other words,
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these expressions do not yield the same value ofa if we
consider a mixture of three components with mole fractions
x1, x2 and x3; 2 and 3 being identical components so that
k
(0)
12 = k

(0)
13 , k(1)12 = k

(1)
13 , k(2)12 = k

(2)
13 andk(0)23 = k

(1)
23 = 0, and

an equivalent mixture of only two components with mole
fractionsx1 andx̂2 = x2 +x3. Another shortcoming pointed
out by these authors is the so-called dilution effect. That is,
when the number of components in the mixture increases,
the composition-dependent term in the mixing rule vanishes
and the relation given by Eq. (8) in expression (6), reduces to
the classical one-parameter mixing rule. However, it can be
noted that Eq. (10) does not suffer of this effect. A thorough
discussion concerning the different tests for checking the
dilution effect and the invariance of composition-dependent
mixing rules can be found in Zabaloy and Vera [15].

2.4. Previous generalized composition-dependent
mixing rules

Mathias et al. [6] presented the following generalized
two-parameter mixing rule, which was developed as a poly-
nomial depending on the composition,

a =
p∑

i=1

xi




p∑
j=1

xjaji(1 − k
(0)
ji ) +

[
p∑

k=1

xk(akik
(1)
ki )1/3

]3


(12)

For binary mixtures, this expression is equal to the mixing
rule suggested by Panagiotopoulos and Reid [1]. Calcu-
lations carried out by these authors using their proposed
mixing rule and that of Panagiotopoulos and Reid for the
prediction of vapor–liquid and liquid–liquid equilibria of
ternary systems showed that the results obtained using both
mixing rules were similar.

Alternatively, Schwartzentruber and Renon [7] proposed
two modifications to the Adachi–Sugie mixing rule [2].
Firstly, to avoid the invariance problem, these authors in-
clude a ternary interaction parameter in the mixing rule,

a =
p∑

i=1

p∑
j=1

xixj

[
aij(1 − k

(0)
ij ) +

p∑
k=1

χijkxk

]
(13)

with

3χijk = δijk
(1)
ik + δikk

(1)
ij + δjik

(1)
jk + δjkk

(1)
ji

+δkik
(1)
kj + δkjk

(1)
ki (14)

whereδij is a “physical” Kronecker delta that is the unity
if the indexesi andj refer to the same component (not only
if i = j ) and equal to zero otherwise.

Secondly, to circumvent the problem of the dilution effect,
these authors presented a “distance-parameter” expression
based on the difference between critical properties, acentric

factors and dipole moments of moleculesi andj,

D2
ij = 1

4



(
aci − acj

aci + acj

)2

+
(
bci − bcj

bci + bcj

)2

+
(
ωi − ωj

ωi + ωj

)2

+
(
µi − µj

µi + µj

)2

 (15)

so thatδij can be expressed as

δij = 1 − Dij, 0 ≤ δij ≤ 1 (16)

δij is considered as a binary parameter, which is correlated
to a certain “distance” between moleculesi and j, so that
δij = 1 when moleculesi andj are strictly identical, and de-
creases continuously to zero when these molecules become
different. Nevertheless, it should be pointed out that Eq. (15)
is highly empirical and its use is sometimes incoherent. For
instance, we found that for molecules like pentane and do-
decane or pentane and isopentane, the distance value in both
cases is about 0.5. Since the dipole moments of pentane and
dodecane are zero [16], then only the contribution of the first
three terms in the right-hand side of this equation is taken
into account. However, for molecules such as pentane and
isopentane, which have a dipole moment slightly different
to zero [16], the last term is the most important contribution
in this expression.

3. Approach proposed

The simples but coherent generalizations top component
systems proposed in this work for the 2PCD, Eq. (8), and
3PCD, Eq. (10), mixing rules are

kij = k
(0)
ij

[
1 +

p∑
m=1

xm(k̂
(1)
mi(ij)

+ k̂
(1)
mj(ij)

)

]
(17)

and

kij = k
(0)
ij


1 +

∑p

m=1xm(k̂
(1)
mi(ij)

k
(2)
mi + k̂

(1)
mj(ij)

k
(2)
mj )∑p

m=1xm(k
(2)
mi + k

(2)
mj )


 (18)

We refer Eqs. (17) and (18) as the G2PCD and G3PCD
mixing rules, respectively.

For both generalized expressions, the interaction parame-
ters satisfy the following conditions if moleculesi andj are
strictly identical (i = j or i and j are the indexes referring
to the same component as in the case of a binary mixture
1–2 developed as a pseudo-ternary 1–3):

kij = k
(0)
ij = 0, k̂

(1)
ij(mi)

= 0, k
(2)
ij = k

(2)
ji = 0 (19)

otherwisek(0)ij is different to zero, so that we can define the
following relations:
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k̂
(1)
mi(ij)

= k
(1)
mi

k
(0)
ij

, k̂
(1)
mj(ij)

=
k
(1)
mj

k
(0)
ij

,

k
(2)
ij + k

(2)
ji = 1, 0 < k

(2)
ij < 1 (20)

wherek̂(1)mi(ij)
and k̂(1)mj(ij)

are the interaction parameters of the
binary i − j .

An inspection of the above expressions, shows that the in-
teraction parameterk(0)ij in Eq. (17) is the same to that given

in Eq. (8) while the interaction parametersk(0)ij andk(2)ij of
Eq. (18) are the same to those given in Eq. (10). Addition-
ally, it is assumed in Eqs. (17) and (18) that interactions
between moleculesi and j depend not only on the interac-
tions between them but also on the nature of the medium in
which these molecules are found. That is, for a mixture with
p components, the influence of the others componentsm of
the mixture is translated mediating their mole fractions,xm,
and their physicochemical properties which are relied to the
parameterŝk(1)mi(ij)

and k̂(1)mj(ij)
.

3.1. Limit form of the G3PCD mixing rule

For a binary mixture, Eqs. (17) and (18) are identical when
the third interaction parametersk(2)ij arek(2)ij = k

(2)
ji = 0.5.

Therefore, it can be seen that Eq. (8) is a limit form of that
given by Eq. (10).

On the contrary, for a mixture containingp components, if
all the interaction parametersk(2)ij are assumed to bek(2)ij =
0.5 when the componentsi and j are different, andk(2)ij =
k
(2)
ji = 0 when the components are identical or the indexesi

andj are referred to the same component, Eq. (18) becomes,

kij = k
(0)
ij


1 +

0.5
∑p

m=1xm(k̂
(1)
mi(ij)

+ k̂
(1)
mj(ij)

)

1 − 0.5(xi + xj )


 (21)

which is the limit form of the G3PCD mixing rule, and this
is different to the G2PCD mixing rule, Eq. (17), when it is
applied top components. It can also be verified that in con-
tinuous thermodynamics, the summation term ofxm(k̂

(1)
mi(ij)

+
k̂
(1)
mj(ij)

) in Eq. (21) is reduced by a factor of 0.5 with respect
to the corresponding term in the G2PCD mixing rule.

3.2. Excess function models from mixing rules

To represent binary vapor–liquid and/or liquid–liquid
equilibrium data as well as to predict the phase equilibria
of multicomponent systems using the formalism “equation
of state — excess function” at constant packing fraction
[9], we have derived the corresponding expressions of the
excess function models from the mixing rules described
above. Thus, the interaction parametersEij derived from
Eqs. (8) and (10) are

Eij = E
(0)
ij + E

(1)
ij (xi − xj ) (22)

and

Eij = E
(0)
ij + E

(1)
ij

e
(2)
ij xi − e

(2)
ji xj

e
(2)
ij xi + e

(2)
ji xj

(xi + xj ) (23)

where

E
(0)
ji = E

(0)
ij , E

(1)
ji = −E

(1)
ij , e

(2)
ji = 1 − e

(2)
ij ,

E
(0)
ii = E

(1)
ii = 0, 0 < e

(2)
ij < 1 (24)

while the corresponding interaction parametersEij derived
from the proposed mixing rules, Eqs. (17), (18) and (21)
are

Eij = E
(0)
ij

[
1 +

p∑
m=1

xm(e
(1)
mi(ij)

+ e
(1)
mj(ij)

)

]
(25)

Eij = E
(0)
ij


1 +

∑p

m=1xm(e
(1)
mi(ij)

e
(2)
mi + e

(1)
mj(ij)

e
(2)
mj )∑p

m=1xm(e
(2)
mi + e

(2)
mj )


 (26)

and

Eij = E
(0)
ij


1 +

0.5
∑p

m=1xm(e
(1)
mi(ij)

+ e
(1)
mj(ij)

)

1 − 0.5(xi + xj )


 (27)

Again, Eq. (27) is the limit form of the G3PCD excess func-
tion, Eq. (26), and it is obtained by settinge(2)ij = e

(2)
ji = 0.5

when componentsi and j are different, ande(2)ij = e
(2)
ji = 0

when the components are identical or the indexesi andj are
referred to the same component.

In Eqs. (25)–(27), the common parameters satisfy the fol-
lowing conditions, if moleculesi andj are strictly identical
(i.e., if i = j or i andj are the indexes referring to the same
component as in the case of a binary mixture 1–2 developed
as a pseudo-ternary 1–3).

Eij = E
(0)
ij = 0, e

(1)
ij(mi)

= 0,

e
(2)
ij = e

(2)
ji = 0, 0 < e

(2)
ij < 1 (28)

while if E(0)
ij is different to zero, the following expressions

can be defined:

e
(1)
mi(ij)

= E
(1)
mi

E
(0)
ij

, e
(1)
mj(ij)

=
E

(1)
mj

E
(0)
ij

, e
(2)
ij + e

(2)
ji = 1 (29)

wheree(1)mi(ij)
ande(1)mj(ij)

are the interaction parameters for the
binary i − j .

4. Application of the approach

The approach presented in this work was tested on the
representation of binary vapor–liquid and liquid–liquid
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Table 1
Estimated interaction parameters for the 2PCD and 3PCD excess function models associated with the PRCRP equation of state

System Adachi–Sugie Schwartzentruber–Renon

A
(0)
12 (J cm−3) B

(0)
12 (J cm−3) A

(1)
12 (J cm−3) B

(1)
12 (J cm−3) A

(0)
12 (J cm−3) B

(0)
12 (J cm−3) A

(1)
12 (J cm−3) e

(2)
12

Vapor–liquid equilibria
Benzene−hexane 106.0 123.0 0.0 0.0 106.0 123.0 0.0 0.500
Methanol−benzene 546.0 −405.2 −204.2 0.0 657.8 −397.4 −266.2 0.712
Ethanol−hexane 458.7 −360.4 −214.2 0.0 581.0 −344.8 −268.3 0.737
Ethanol−benzene 386.6 −238.3 −128.1 0.0 470.4 −235.4 −174.7 0.751
1-Propanol−benzene 315.4 −114.6 −77.2 0.0 350.8 113.9 −98.1 0.707
Acetone−methanol 211.9 0.0 42.2 0.0 211.9 0.0 42.2 0.500
Acetone−ethanol 188.9 491.8 0.0 0.0 188.9 491.8 0.0 0.500
Acetone−water 1084.0 −1372.7 476.8 0.0 1084.0 −1372.7 476.8 0.500
Methanol−water 360.3 −1063.5 78.5 0.0 305.9 −1238.7 87.1 0.728
Ethanol−water 776.0 −1179.5 199.5 0.0 714.3 −1225.1 185.2 0.668
1-Propanol−water 1100.9 −1081.9 280.0 0.0 1100.9 −1081.9 280.0 0.500

Liquid–liquid equilibria
Water−pentane 4006.0 −29.9 −2092.0 −2477.0
Water−hexane 3809.0 1604.0 −1981.0 −3740.0
Water−benzene 3026.0 −2041.0 −1428.0 −1588.0
Water−heptane 3768.0 1096.0 −1944.0 −3330.0
Water−octane 3720.0 1129.0 −1939.0 −3739.0

equilibria using the PRSV [12] and PRCRP [13] equa-
tions of state associated with the 2PCD and 3PCD excess
function models. Furthermore, the prediction of ternary
vapor–liquid and liquid–liquid equilibria using this formal-
ism was performed for the systems acetone–methanol–water,
acetone–ethanol–water, and hexane–ethanol–benzene for
vapor–liquid equilibria, and water–methanol–benzene,
water–ethanol–hexane, and water–1-propanol–benzene for
liquid–liquid equilibria.

Table 2
Estimated interaction parameters for the 2PCD and 3PCD excess function models associated with the PRSV equation of state

System 2PCD excess function model 3PCD excess function model

A
(0)
12 (J cm−3) B

(0)
12 (J cm−3) A

(1)
12 (J cm−3) B

(1)
12 (J cm−3) A

(0)
12 (J cm−3) B

(0)
12 (J cm−3) A

(1)
12 (J cm−3) e

(2)
12

Vapor–liquid equilibria
Benzene−hexane 38.6 49.1 0.0 0.0 38.6 49.1 0.0 0.500
Methanol−benzene 187.9 −142.8 −70.3 0.0 229.1 −135.6 −93.7 0.721
Ethanol−hexane 157.9 −125.0 −75.3 0.0 204.2 −102.7 −95.4 0.744
Ethanol−benzene 133.6 −74.5 −44.8 0.0 162.0 −73.5 −60.3 0.747
1-Propanol−benzene 108.8 −32.5 −27.2 0.0 125.6 38.5 −36.3 0.742
Acetone−methanol 72.7 0.0 15.2 0.0 72.7 0.0 15.2 0.500
Acetone−ethanol 65.5 17.7 0.0 0.0 65.5 17.7 0.0 0.500
Acetone−water 373.1 −471.3 164.7 0.0 373.1 −471.3 164.7 0.500
Methanol−water 122.6 −384.7 27.1 0.0 104.1 −439.0 29.4 0.725
Ethanol−water 267.3 −394.2 68.8 0.0 244.4 −418.9 62.9 0.669
1-Propanol−water 385.1 −329.7 99.0 0.0 385.1 −329.7 99.0 0.500

Liquid–liquid equilibria
Water−pentane 1368.0 73.5 −711.2 −933.7
Water−hexane 1309.0 526.6 −681.7 −1254.0
Water−benzene 1038.0 0.0 −490.2 −549.5
Water−heptane 1293.0 379.2 −667.1 1140.0
Water−octane 1276.0 474.5 −665.2 −1371.0

4.1. Representation of binary vapor–liquid and
liquid–liquid equilibria

It has been recognized that for obtaining accuracy repre-
sentations of phase equilibria of mixtures in a wide range
of temperatures, it is necessary to consider the model
parameters as depending on temperature. Therefore, the
following inverse temperature linear function was used for
representing the variation on temperature of the interaction
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parameters given in the above equations,

E
(k)
ij = A

(k)
ij + B

(k)
ij

(
T0

T
− 1

)
(30)

where T0 is the reference temperature set equal to
298.15 K. For vapor–liquid equilibria, we consider only
one temperature-dependent parameter(k = 0) while for
liquid–liquid equilibria, two temperature-dependent param-
eters(k = 0,1) were considered.

In general, the interaction parametersA
(k)
ij andB(k)

ij for the
excess function models considered were estimated by mini-
mizing the deviations between experimental and calculated
values of either vapor–liquid or liquid–liquid equilibrium
data of binary mixtures. For the systems studied Tables 1
and 2 give the interaction parameters for the excess function
models, Eqs. (22) and (23), associated to the PRCRP and
PRSV equations of state, respectively, which were estimated
by minimization of the following objective functions:

FLV = δP

P
+ 100δy (31)

and

FLL = δx1

x1
+ δx2

x2
(32)

where

δP

P
= 100

Np

Np∑
i=1

∣∣∣∣∣P
exp
i − P calc

i

P
exp
i

∣∣∣∣∣ (33)

δy = 1

Np

Np∑
i=1

∣∣∣yexp
i − ycalc

i

∣∣∣ (34)

δx1

x1
= 100

Np

Np∑
i=1

∣∣∣∣∣x
exp
1i − xcalc

1i

x
exp
1i

∣∣∣∣∣ (35)

Table 3
Vapor–liquid equilibria using the PRCRP and PRSV equations of state associated with the 2PCD and 3PCD excess function models

System Np Temperature
range (K)

PRCRP EoS+
2PCD excess
function model

PRCRP EoS+
3PCD excess
function model

PRSV EoS+
2PCD excess
function model

PRSV EoS+
3PCD excess
function model

δP/P (%) δy δP/P (%) δy δP/P (%) δy δP/P (%) δy

Benzene−hexane 286 293−403 0.55 0.004 0.55 0.004 0.72 0.005 0.72 0.005
Methanol−benzene 163 288−373 1.99 0.020 1.05 0.012 1.99 0.020 1.04 0.012
Ethanol−hexane 224 298−353 3.21 0.019 0.81 0.011 3.42 0.020 0.89 0.013
Ethanol−benzene 251 293−339 1.56 0.019 0.65 0.011 1.59 0.019 0.65 0.011
1-Propanol–benzene 294 273−348 2.46 0.013 2.22 0.012 2.77 0.014 2.36 0.014
Acetone−methanol 157 288−328 1.55 0.011 1.55 0.011 1.52 0.011 1.52 0.011
Acetone−ethanol 96 288−328 1.70 0.010 1.70 0.010 1.74 0.008 1.74 0.008
Acetone−water 132 288−373 1.67 0.008 1.67 0.008 1.65 0.008 1.65 0.008
Methanol−water 182 298−413 1.40 0.008 1.26 0.007 1.28 0.008 1.14 0.007
Ethanol−water 239 293−363 0.98 0.009 0.53 0.005 1.03 0.009 0.64 0.006
1-Propanol−water 189 298−363 1.46 0.012 1.46 0.012 1.62 0.014 1.62 0.014

Global 2213 1.68 0.012 1.17 0.009 1.76 0.013 1.23 0.010

and

δx2

x2
= 100

Np

Np∑
i=1

∣∣∣∣∣x
exp
2i − xcalc

2i

x
exp
2i

∣∣∣∣∣ (36)

In these equations(P exp
i −P calc

i ), (yexp
i −ycalc

i ), (xexp
1i −xcalc

1i ),
(x

exp
2i − xcalc

2i ) are the residuals between the experimental
and calculated values of, respectively, bubble-point pressure,
vapor compositions, mole fractions of water solubilized in
hydrocarbon, and mole fractions of hydrocarbon solubilized
in water for an experimenti, andNp is the total number of
experiments.

The agreement between theory and experiment was es-
tablished through the absolute percent relative deviation in
pressure,δP/P, and absolute deviation in vapor composi-
tions, δy, for vapor–liquid equilibria, and absolute percent
relative deviation in mole fractions of water solubilized in
hydrocarbon,δx1/x1, and mole fractions of hydrocarbon sol-
ubilized in water,δx2/x2, for liquid–liquid equilibria. These
deviations were obtained from the 2PCD and 3PCD excess
function models by using the optimal values of the inter-
action parameters and they are given in Tables 3 and 4
for, respectively, vapor–liquid and liquid–liquid equilibria.
Experimental phase equilibrium data used on the represen-
tation were taken from vapor–liquid and liquid–liquid equi-
librium data compilations [17–19]. On the whole, Tables 3
and 4 show that the quality of the fit to experimental values
is good for most systems.

Table 3 indicates that a good representation was ob-
tained for the system benzene–hexane using the 2PCD
and 3PCD excess function models associated to the PRSV
(δP/P = 0.72%, δy = 0.005) and PRCRP (δP/P =
0.55%, δy = 0.004) equations of state, but that for the
systems alcohol–hydrocarbon, the best representation was
obtained using the 3PCD excess function model. For the
systems acetone–alcohol, acetone–water and water–alcohol
both models gave similar results.
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Table 4
Liquid–liquid equilibria using the PRCRP and PRSV equations of state with the 2PCD excess function model

System Np Temperature range (K) δx1/x1 (%) δx1
a δx2/x2 (%) δx2

b

PRCRP equation of state
Water−pentane 4 273−298 3.22 0.125× 10−4 3.12 0.327× 10−6

Water−hexane 6 273−313 5.20 0.183× 10−4 1.32 0.390× 10−7

Water−benzene 11 293−343 0.66 0.559× 10−4 1.13 0.595× 10−5

Water−heptane 6 273−313 2.31 0.257× 10−4 5.39 0.282× 10−7

Water−octane 5 273−303 2.13 0.620× 10−5 6.52 0.820× 10−8

PRSV equation of state
Water−pentane 4 273−298 1.62 0.468× 10−5 3.11 0.327× 10−6

Water−hexane 6 273−313 5.26 0.245× 10−4 1.23 0.349× 10−7

Water−benzene 11 293−343 0.66 0.503× 10−4 1.14 0.583× 10−5

Water−heptane 6 273−313 2.31 0.257× 10−4 5.48 0.283× 10−7

Water−octane 5 273−303 1.88 0.107× 10−4 6.50 0.800× 10−8

a δx1 = 1
Np

∑Np

i=1

∣∣xexp
1i − xcalc

2i

∣∣.
b δx2 = 1

Np

∑Np

i=1

∣∣xexp
2i − xcalc

2i

∣∣.

Table 4 shows the results obtained with the 2PCD ex-
cess function model associated to the PRCRP and PRSV
equations of state on the representation of mutual sol-
ubilities for the systems water–pentane, water–hexane,
water–benzene, water–heptane and water–octane. The same
calculations were also carried out using the 3PCD excess
function model but we have found no significantly im-
provements in adjusting one more parameter. For this rea-
son, we have not report the estimated three parameters of
this model.

Table 5
Predicted isothermal and isobaric vapor–liquid equilibria of ternary systems using the PRCRP and PRSV equations of state associated with the G3PCD
excess function model

System T or P Np Method 1a Method 2b

δP/P δy δP/P δy

PRCRP equation of state
Acetone−methanol−water 373.15 K 51 1.56 0.021 1.61 0.023

523.15 K 57 1.89 0.006 1.33 0.007c

1.01 bar 58 7.11 0.053 6.80 0.051
1.01 bar 54 3.34 0.016 3.56 0.016

Acetone−ethanol−water 323.15 K 60 7.18 7.61
Hexane−ethanol−benzene 328.15 K 43 7.85 0.028 7.69 0.030

Global 323 4.79 0.024 5.00 0.026

PRSV equation of state
Acetone−methanol−water 373.15 K 51 1.57 0.021 1.91 0.022

523.15 K 57 1.31 0.006 1.55 0.007c

1.01 bar 58 7.09 0.053 7.20 0.053
1.01 bar 54 3.29 0.016 3.59 0.016

Acetone−ethanol−water 323.15 K 60 7.76 7.69
Hexane−ethanol−benzene 328.15 K 43 7.44 0.026 7.26 0.023

Global 323 4.73 0.024 4.86 0.025

a Limit form of the G3PCD excess function model withe(2)ij = 0.5 and the interaction parameters of the 2PCD excess function model given in
Tables 1 and 2.

b G3PCD excess function model with interaction parameters given in Tables 1 and 2.
c Experimental data taken from Griswold and Wong [20].

4.2. Prediction of ternary vapor–liquid and
liquid–liquid equilibria

Isothermal and/or isobaric vapor–liquid equilibrium cal-
culations were performed to predict the phase diagrams
of the systems acetone–methanol–water, acetone–ethanol–
water, and hexane–ethanol–benzene. Table 5 gives the
results obtained from the predictions using the G3PCD ex-
cess function model, Eq. (26). In particular, for the limit
form of the G3PCD excess function model, Eq. (27), the
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calculations were carried out by usinge(2)ij = 0.5 together

with parametersE(0)
ij andE(1)

ij of the 2PCD excess function
model given in Tables 1 and 2.

An examination of Table 3 indicates that, with excep-
tion of the system ethanol–hexane, the representation of
the vapor–liquid equilibria for the systems studied were
very satisfactory when the 2PCD excess function models
is used. Consequently, it is possible to understand why
we did not find appreciable differences in the predictions
reported in Table 5 using both methods for the systems
acetone–methanol–water and acetone–ethanol–water. Con-
versely, for the system hexane–ethanol–benzene, where the
influence of a third parameter in the excess function model is
sensible on the representation of the system ethanol–hexane,
the two methods lead to almost the same results when these
are applied to the prediction of ternary systems. Hence, it
can be said that the singularities detected on the representa-
tion of the thermodynamic properties of binary systems are
not conserved as a system become multicomponent when it
is formed from these binary systems.

Ternary liquid–liquid phase diagrams of the systems
water–methanol–benzene, water–ethanol–hexane, and
water–1-propanol–benzene, were predicted using the for-
malism “equation of state — excess function” in conjunc-
tion with the G2PCD and G3PCD excess function models.

Fig. 1. Liquid–liquid equilibria for the water–methanol–benzene system at 303.15 K. Experimental data taken from [19]. Calculated values obtainedusing
the PRCRP equation of state and the limit form of the G3PCD excess function model.

Results of the predictions are presented in Figs. 1–3. In
these figures, the filled circles with full lines are the exper-
imental data [17] while the open circles with dashed lines
are the calculated values. All calculations were performed
using the PRSV and PRCRP equations of state; however,
because the quality for predicting liquid–liquid equilibria
was similar for both equations, then only the performance
of one of them will be reported in all figures hereinafter.

The method of calculation for the ternary liquid systems
was a two-phase flash calculation using equimolar global
compositions obtained from experimental compositions of
the coexisting phases. The predicted tie lines presented in
Figs. 1–3, show how the slopes of these tie lines change
with respect to the experimental ones.

Fig. 1 shows the prediction of the liquid–liquid equilibria
for the system water–methanol–benzene at 303.15 K using
the limit form of the G3PCD excess function model, Eq. (27)
with e

(2)
ij = 0.5, and the interaction parametersE

(0)
ij andE(1)

ij
of the 2PCD excess function model. An inspection of this
figure shows that most of the predicted mutual solubilities
are in good accordance with the experimental data.

In order to study the behavior of the G3PCD excess
function model with parameters,E(0)

ij E
(1)
ij , ande(2)ij for this

ternary system, we have analyzed the deviations obtained
from the regression of phase equilibrium data for the systems
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Fig. 2. Liquid–liquid equilibria for the water–ethanol–hexane system at 293.15 K. Experimental data taken from [19]. Calculated values obtained using
the PRCRP equation of state and the limit form of the G3PCD excess function model.

Fig. 3. Liquid–liquid equilibria for the water–1-propanol–benzene system at 303.15 K. Experimental data taken from [19]. Calculated values obtained
using the PRCRP equation of state and the limit form of the G3PCD excess function model.
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water–methanol and water–benzene using both the 2PCD
and 3PCD excess function models. Thus, as shown in
Table 3, we can see that there is not a sensible improvement
on the representation of the vapor–liquid equilibria for the
system water-methanol using the 3PCD excess function
model with respect to those obtained with the 2PCD one.
Similarly, we have not found differences in using either
the 2PCD or 3PCD model when they are applied on the
representation of the liquid–liquid equilibrium data for the
system water–benzene.

Therefore, we cannot expect any improvement on the
prediction of the liquid–liquid equilibria for the system
water–methanol–benzene in spite of using more param-
eters. Nevertheless, it should be mentioned that the rep-
resentation of the vapor–liquid equilibria for the system
methanol–benzene is greatly improved when the 3PCD
excess function model is considered.

Fig. 2 shows the predictions of the liquid–liquid equilib-
ria for the system water–ethanol–hexane at 293.15 K using
the limit form of the G3PCD excess function model with
e
(2)
ij = 0.5 and the interaction parameters of the 2PCD ex-

cess function model. This figure shows that for this system,
with exception of the two last tie lines, this model is able to
predict correctly the experimental behavior.

Fig. 3 presents the predicted liquid–liquid equilibria for
the system water–1-propanol–benzene at 303.15 K using the
limit form of the G3PCD excess function model withe(2)ij =
0.5 and the 2PCD excess function model parametersE

(0)
ij

andE(1)
ij given in Table 1.

Similar results were obtained when the G3PCD excess
function model is applied to the prediction of the above sys-
tems using the three estimated parametersE

(0)
ij , E(1)

ij , and

e
(2)
ij , also given in Table 1. Prediction of the liquid–liquid

equilibria for these systems using the G2PCD excess func-
tion model was also carried out. The obtained results were,
as expected, less satisfactory than those obtained with the
G3PCD model.

5. Conclusions

A simple but consistent generalization of the 2PCD,
Eq. (8), and 3PCD, Eq. (10), mixing rules have been pre-
sented. These mixing rules in conjunction with excess
function models and associated to equations of state can
be applied to multicomponent systems. It is shown that
these generalized expressions do not present the shortcom-
ings related to the invariance problem and that of dilu-
tion effect existing in the Schwartzentruber–Renon type
mixing rules when these are applied to multicomponent
mixtures. The performance of the suggested mixing rules
was demonstrated on the prediction of ternary vapor–liquid
and liquid–liquid equilibria using estimated interaction pa-
rameters obtained from binary phase equilibrium data.In
addition, it is shown that a more satisfactory prediction of

the ternary vapor–liquid and liquid–liquid equilibria can
be obtained by using the limit form of the G3PCD excess
function model. Therefore, it seems that to obtain a better
prediction of the thermodynamic properties of multicom-
ponent systems it is more convenient to get a less accurate
representation of all the singularities for the binary systems.

Besides, it is important to point out that the PRSV [12]
and the PRCRP [13] equations of state give similar re-
sults when both equations are applied with the same ex-
cess function on the representation of binary vapor–liquid
and liquid–liquid equilibrium data. Similar conclusions are
derived when these equations are applied to the prediction
of ternary vapor–liquid and liquid–liquid equilibria. This is
due mainly to that both equations of state give an excellent
correlation of the pure-component vapor pressures.

Appendix A. The PRSV equation of state

The PRSV equation of state [12] was established through
Eqs. (1) and (4) in conjunction with constantsc1 = 1− √

2
andc2 = 1 + √

2. For pure components, parametersa and
b are estimated as,

a =
(

0.457235
R2T 2

c

Pc

)
α(T ) (A.1)

and

b = 0.077796
RTc

Pc
(A.2)

where the temperature functionα(T) was defined by Stryjek
and Vera [12] as,

α(T ) =
{

1 +
[
κ0 + κ1

(
1 +

(
T

Tc

)0.5
)(

0.7 − T

Tc

)]

×
(

1 −
(
T

Tc

)0.5
)}2

(A.3)

with

κ0 = 0.378893+ 1.4897153ω − 0.17131848ω2

+0.0196554ω3 (A.4)

whereω is the acentric factor,Tc and Pc are the critical
temperature and pressure, andκ1 is a constant specific for
each fluid.

Appendix B. The PRCRP equation of state

The PRCRP equation of state [13] was established through
Eqs. (1) and (4) in conjunction with constantsc1 = 0 and
c2 = 2+ √

2. For pure components, parametersa andb are
estimated as,

a =



am if T ≤ Tb

as if T ≥ 1.25Tb

Xas + (1 − X)am if Tb ≤ T ≤ 1.25Tb

(B.1)
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Table 6
Pure-component properties and parametersm0, m1 and m2 used in the PRCRP equation of state

Component Tc (K) Pc (bar) Tb (K) m0 m1 m2 Tmin − Tmax (K) dP/P (%) Np Reference

Pentane 469.65 33.680 309.21 0.74428 1.92415 0.42290 207.97–297.98 0.19 13 [21]
286.43–309.97 0.03 9 [22]

Hexane 507.43 30.124 341.89 0.81114 2.29511 0.55634 300.26–321.26 0.06 8 [23]
286.18–342.69 0.01 16 [22]

Benzene 562.15 48.970 353.24 0.68993 2.25148 0.62126 287.70–354.07 0.04 19 [22]
294.16–378.15 0.05 19 [24]

Heptane 540.26 27.348 371.57 0.87860 2.54606 0.63021 299.08–372.43 0.04 20 [22]
Octane 568.82 24.855 398.81 0.94488 2.82804 0.72155 326.08–399.72 0.02 19 [22]
Acetone 508.15 47.015 329.20 0.81844 1.68549 0.27537 310.83–329.17 0.02 8 [25]

273.05–328.43 0.05 13 [26]
Methanol 512.65 80.959 337.70 1.15812 1.15727 −0.13199 288.05–356.83 0.05 20 [27]

274.87–336.53 0.15 15 [28]
288.15–337.65 0.07 18 [29]
262.59–356.03 0.04 25 [30]

Ethanol 513.92 61.370 351.44 1.27246 1.63796 −0.05154 273.15–351.70 0.14 8 [31]
293.15–323.15 0.06 6 [32]
292.77–366.63 0.04 25 [27]
276.50–370.50 0.15 27 [30]

1-Propanol 536.78 51.676 370.30 1.24520 3.34835 0.73782 321.29–370.25 0.15 15 [33]
333.32–377.73 0.05 19 [27]
293.19–389.48 0.05 27 [30]
287.45–389.45 0.16 27 [30]

Water 647.37 221.200 373.15 0.85710 1.35795 0.16530 273.15–373.15 0.01 52 [34]

where

am = a0

{
1 + m1

[
1 −

(
T

Tb

)0.5
]

− m2

(
1 − T

Tb

)}

(B.2)

as = ac

{
1 + m0

[
1 −

(
T

Tc

)0.5
]}2

(B.3)

and

X = (T − Tb)
2

(T − Tb)2 + (1.25Tb − T )2
(B.4)

wherea0 is the value ofa(T) estimated at the normal boiling
temperatureTb, while parametersac, b, andm0 are, in turn,
obtained from the critical properties and the normal boiling
temperature of pure components, i.e,

ac = 0.45724
R2T 2

c

Pc
(B.5)

m0 = (a0/ac)
0.5 − 1

1 − (Tb/Tc)0.5
(B.6)

b = 0.045572
RTc

Pc
(B.7)

Relevant pure-component properties are given in Table 6.
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